Description logics are related to, but developed independently from, modal logic (ML). Many description logics are syntactic variants of modal logic, so many logical representations expressed in modal logic correspond to description logic formalisms:
Modal logic | Description Logics |
---|---|
M, x ⊨ ¬ϕ iff M, x ⊭ ϕ (¬ϕ)M = { x | x ∉ ϕM } |
(¬C)I = ΔI \ CI |
M, x ⊨ ϕ1 ∧ ϕ2 iff M, x ⊨ ϕ1 and M, x ⊨ ϕ2 (ϕ1 ∧ ϕ2)M = ϕ1M ∩ ϕ2M |
(C ⊓ D)I = CI ∩ DI |
M, x ⊨ ϕ1 ∨ ϕ2 iff M, x ⊨ ϕ1 and M, x ⊨ ϕ2 (ϕ1 ∨ ϕ2)M = ϕ1M ∪ ϕ2M |
(C ⊔ D)I = CI ∪ DI |
M, x ⊨ ⋄ϕ iff ∃y((x,y) ∈ R and M, y ⊨ ϕ) (⋄ϕ)M = { x | ∃y((x,y) ∈ R and y ∈ ϕM)} |
(∃R.C)I = {x ∈ ΔI | ∃y.(x, y) ∈ RI ^ y ∈ CI} |
M, x ⊨ □ϕ iff ∀y((x,y) ∈ R → M, y ⊨ ϕ) (□ϕ)M = { x | ∀y((x,y) ∈ R → y ∈ ϕM)} |
(∀R.C)I = {x ∈ ΔI | ∀y.(x, y) ∈ RI → y ∈ CI} |